Drive System Design (DSD), a company specializing in the rapid engineering and development of electrified propulsion systems and associated technologies, has developed a new method and strategic plan to better support clients in designing and developing electric motors and inverters that best fit their needs.
DSD has observed that many motor and inverter manufacturers, as well as system integrators, often take their electrification development programs directly to a dynamometer (dyno) test cell, only to uncover critical issues that need to be overcome, which can stop the programs in its tracks. With this seemingly direct approach, months are added to the project timelines in order to find and fix unforeseen integration issues.
To help save its customers months of time and tens of thousands of dollars, while ensuring a more robust, reliable concept before ever touching a dyno test cell, DSD has created a new Motor Control Development Method consisting of four key phases that it will now implement for most electric motor and inverter development projects.
“There is immense benefit in minimizing project risk by following our four-phase approach. Too often, a push to be first-to-market ends up incurring more cost and time,” said Jon Brentnall, president, Drive System Design. “Ultimately, this approach will enable our customers to be first-time capable, meaning they will be set up for a successful pairing of the inverter and motor once the product reaches the dyno test cell. This will speed up final validation and significantly reduce the risk of needing extra hardware iterations, saving our customers both time and money while delivering a more high-quality product.”
Below is a look at DSD’s four-phase approach, with many companies currently skipping from Phase 1 to Phase 4:
As an initial investment to fulfill its new motor development strategy, DSD has acquired a C-HIL rig, which will be housed at its technical center in Farmington Hills, Michigan. Additionally, DSD will be partnering with the Auburn Hills-based rig supplier to have access to their P-HIL rig and motor emulator, with plans to invest in one of its own next year.
“Real-world issues can now be predicted or reproduced and solved prior to – or in parallel with – dyno or test cell work,” said Brentnall. “This new approach and equipment will further advance DSD’s turnkey capability of delivering motor controls and electrification across a range of markets.”
Through DSD’s method, customers will now be able to better optimize their time, as a large proportion of the inverter software and hardware can be developed and validated through Phase 2 and 3 while the motor hardware is being made. Further, the method is adaptable for various vehicle types, including automotive, trucking, off-highway, defense and aerospace.
With the immense value of taking a more comprehensive approach to motor and inverter design and development like DSD’s, the company predicts that most companies tackling similar projects, including key competitors, will adopt a similar approach in the next five to 10 years.